
NAG Fortran Library Routine Document

F11DDF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F11DDF solves a system of linear equations involving the preconditioning matrix corresponding to SSOR
applied to a real sparse nonsymmetric matrix, represented in coordinate storage format.

2 Specification

SUBROUTINE F11DDF(TRANS, N, NNZ, A, IROW, ICOL, RDIAG, OMEGA, CHECK, Y,
1 X, IWORK, IFAIL)

INTEGER N, NNZ, IROW(NNZ), ICOL(NNZ), IWORK(2*N+1), IFAIL
real A(NNZ), RDIAG(N), OMEGA, Y(N), X(N)
CHARACTER*1 TRANS, CHECK

3 Description

This routine solves a system of linear equations

Mx ¼ y; or MTx ¼ y;

according to the value of the argument TRANS, where the matrix

M ¼ 1

!ð2� !Þ ðDþ !LÞD�1ðDþ !UÞ

corresponds to symmetric successive-over-relaxation (SSOR) (Young (1971)) applied to a linear system
Ax ¼ b, where A is a real sparse nonsymmetric matrix stored in coordinate storage (CS) format (see
Section 2.1.1 of the F11 Chapter Introduction).

In the definition of M given above D is the diagonal part of A, L is the strictly lower triangular part of A,
U is the strictly upper triangular part of A, and ! is a user-defined relaxation parameter.

It is envisaged that a common use of F11DDF will be to carry out the preconditioning step required in the
application of F11BEF to sparse linear systems. For an illustration of this use of F11DDF see the example
program given in Section 9. F11DDF is also used for this purpose by the black-box routine F11DEF.

4 References

Young D (1971) Iterative Solution of Large Linear Systems Academic Press, New York

5 Parameters

1: TRANS – CHARACTER*1 Input

On entry: specifies whether or not the matrix M is transposed:

if TRANS ¼ ’N’, then Mx ¼ y is solved;

if TRANS ¼ ’T’, then MTx ¼ y is solved.

Constraint: TRANS ¼ ’N’ or ’T’.

F11 – Sparse Linear Algebra F11DDF

[NP3546/20A] F11DDF.1



2: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 1.

3: NNZ – INTEGER Input

On entry: the number of non-zero elements in the matrix A.

Constraint: 1 � NNZ � N2.

4: A(NNZ) – real array Input

On entry: the non-zero elements in the matrix A, ordered by increasing row index, and by
increasing column index within each row. Multiple entries for the same row and column indices are
not permitted. The routine F11ZAF may be used to order the elements in this way.

5: IROW(NNZ) – INTEGER array Input
6: ICOL(NNZ) – INTEGER array Input

On entry: the row and column indices of the non-zero elements supplied in A.

Constraints: IROW and ICOL must satisfy the following constraints (which may be imposed by a
call to F11ZAF):

1 � IROWðiÞ � N, 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ.

IROWði� 1Þ < IROWðiÞ, or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOLðiÞ, for
i ¼ 2; 3; . . . ;NNZ.

7: RDIAG(N) – real array Input

On entry: the elements of the diagonal matrix D�1, where D is the diagonal part of A.

8: OMEGA – real Input

On entry: the relaxation parameter !.

Constraint: 0:0 < OMEGA < 2:0.

9: CHECK – CHARACTER*1 Input

On entry: specifies whether or not the CS representation of the matrix M should be checked:

if CHECK ¼ ’C’, checks are carried on the values of N, NNZ, IROW, ICOL and OMEGA;

if CHECK ¼ ’N’, none of these checks are carried out.

See also Section 8.2.

Constraint: CHECK ¼ ’C’ or ’N’.

10: Y(N) – real array Input

On entry: the right-hand side vector y.

11: X(N) – real array Output

On exit: the solution vector x.

12: IWORK(2*N+1) – INTEGER array Workspace

13: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

F11DDF NAG Fortran Library Manual

F11DDF.2 [NP3546/20A]



For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TRANS 6¼ ’N’ or ’T’,
or CHECK 6¼ ’C’ or ’N’.

IFAIL ¼ 2

On entry, N < 1,
or NNZ < 1,

or NNZ > N2,
or OMEGA lies outside the interval (0.0,2.0),

IFAIL ¼ 3

On entry, the arrays IROW and ICOL fail to satisfy the following constraints:

1 � IROWðiÞ � N and 1 � ICOLðiÞ � N, for i ¼ 1; 2; . . . ;NNZ;

IROWði� 1Þ < IROWðiÞ or IROWði� 1Þ ¼ IROWðiÞ and ICOLði� 1Þ < ICOL}(i), for
i ¼ 2; 3; . . . ;NNZ.

Therefore a non-zero element has been supplied which does not lie in the matrix A, is out of order,
or has duplicate row and column indices. Call F11ZAF to reorder and sum or remove duplicates.

IFAIL ¼ 4

On entry, the matrix A has a zero diagonal element. The SSOR preconditioner is not appropriate
for this problem.

7 Accuracy

If TRANS ¼ ’N’ the computed solution x is the exact solution of a perturbed system of equations
ðM þ �MÞx ¼ y, where

j�Mj � cðnÞ�jDþ !LjjD�1jjDþ !U j;
cðnÞ is a modest linear function of n, and � is the machine precision. An equivalent result holds when
TRANS ¼ ’T’.

8 Further Comments

8.1 Timing

The time taken for a call to F11DDF is proportional to NNZ.

8.2 Use of CHECK

It is expected that a common use of F11DDF will be to carry out the preconditioning step required in the
application of F11BEF to sparse linear systems. In this situation F11DDF is likely to be called many times
with the same matrix M. In the interests of both reliability and efficiency, you are recommended to set
CHECK to ’C’ for the first of such calls, and to ’N’ for all subsequent calls.

F11 – Sparse Linear Algebra F11DDF

[NP3546/20A] F11DDF.3



9 Example

This example program solves a sparse linear system of equations:

Ax ¼ b;

using RGMRES with SSOR preconditioning.

The RGMRES algorithm itself is implemented by the reverse communication routine F11BEF, which
returns repeatedly to the calling program with various values of the parameter IREVCM. This parameter
indicates the action to be taken by the calling program.

If IREVCM ¼ 1, a matrix-vector product v ¼ Au is required. This is implemented by a call to
F11XAF.

If IREVCM ¼ �1, a transposed matrix-vector product v ¼ ATu is required in the estimation of the
norm of A. This is implemented by a call to F11XAF.

If IREVCM ¼ 2, a solution of the preconditioning equation Mv ¼ u is required. This is achieved
by a call to F11DDF.

If IREVCM ¼ 4, F11BEF has completed its tasks. Either the iteration has terminated, or an error
condition has arisen.

For further details see the routine document for F11BEF.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* F11DDF Example Program Text
* Mark 20 Revised. NAG Copyright 2001.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)
INTEGER NMAX, LA, LIWORK, LWORK
PARAMETER (NMAX=1000,LA=10000,LIWORK=2*NMAX+1,LWORK=10000)

* .. Local Scalars ..
real ANORM, OMEGA, SIGMAX, STPLHS, STPRHS, TOL
INTEGER I, IFAIL, IREVCM, ITERM, ITN, LWNEED, LWREQ, M,

+ MAXITN, MONIT, N, NNZ
CHARACTER CKDDF, CKXAF, NORM, PRECON, TRANS, WEIGHT
CHARACTER*8 METHOD

* .. Local Arrays ..
real A(LA), B(NMAX), RDIAG(NMAX), WGT(NMAX),

+ WORK(LWORK), X(NMAX)
INTEGER ICOL(LA), IROW(LA), IWORK(LIWORK)

* .. External Subroutines ..
EXTERNAL F11BDF, F11BEF, F11BFF, F11DDF, F11XAF

* .. Intrinsic Functions ..
INTRINSIC MAX

* .. Executable Statements ..
WRITE (NOUT,*) ’F11DDF Example Program Results’
WRITE (NOUT,*)

* Skip heading in data file
READ (NIN,*)

*
* Read algorithmic parameters
*

READ (NIN,*) N
IF (N.LE.NMAX) THEN

READ (NIN,*) NNZ
READ (NIN,*) METHOD
READ (NIN,*) PRECON, NORM, ITERM
READ (NIN,*) M, TOL, MAXITN
READ (NIN,*) ANORM, SIGMAX
READ (NIN,*) OMEGA

*

F11DDF NAG Fortran Library Manual

F11DDF.4 [NP3546/20A]



* Check size of workspace
*

LWREQ = MAX(N*(M+3)+M*(M+5)+101,7*N+100,(2*N+M)*(M+2)+N+100,
+ 10*N+100)

IF (LWORK.LT.LWREQ) THEN
WRITE (NOUT,*) ’LWORK must be at least’, LWREQ
STOP

END IF
*
* Read the matrix A
*

DO 20 I = 1, NNZ
READ (NIN,*) A(I), IROW(I), ICOL(I)

20 CONTINUE
*
* Read right-hand side vector b and initial approximate solution x
*

READ (NIN,*) (B(I),I=1,N)
READ (NIN,*) (X(I),I=1,N)

*
* Call F11BDF to initialize solver
*

WEIGHT = ’N’
MONIT = 0
IFAIL = 0
CALL F11BDF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN,

+ ANORM,SIGMAX,MONIT,LWNEED,WORK,LWORK,IFAIL)
*
* Calculate reciprocal diagonal matrix elements if necessary
*

IF (PRECON.EQ.’P’ .OR. PRECON.EQ.’p’) THEN
*

DO 40 I = 1, N
IWORK(I) = 0

40 CONTINUE
*

DO 60 I = 1, NNZ
IF (IROW(I).EQ.ICOL(I)) THEN

IWORK(IROW(I)) = IWORK(IROW(I)) + 1
IF (A(I).NE.0.e0) THEN

RDIAG(IROW(I)) = 1.e0/A(I)
ELSE

WRITE (NOUT,*) ’Matrix has a zero diagonal element’
GO TO 140

END IF
END IF

60 CONTINUE
*

DO 80 I = 1, N
IF (IWORK(I).EQ.0) THEN

WRITE (NOUT,*) ’Matrix has a missing diagonal element’
GO TO 140

END IF
IF (IWORK(I).GE.2) THEN

WRITE (NOUT,*)
+ ’Matrix has a multiple diagonal element’

GO TO 140
END IF

80 CONTINUE
*

END IF
*
* Call F11BEF to solve the linear system
*

IREVCM = 0
CKXAF = ’C’
CKDDF = ’C’

*
100 CONTINUE

*
CALL F11BEF(IREVCM,X,B,WGT,WORK,LWORK,IFAIL)

F11 – Sparse Linear Algebra F11DDF

[NP3546/20A] F11DDF.5



*
IF (IREVCM.EQ.1) THEN

*
* Compute matrix-vector product
*

TRANS = ’N’
CALL F11XAF(TRANS,N,NNZ,A,IROW,ICOL,CKXAF,X,B,IFAIL)
CKXAF = ’N’
GO TO 100

*
ELSE IF (IREVCM.EQ.-1) THEN

*
* Compute transposed matrix-vector product
*

TRANS = ’T’
CALL F11XAF(TRANS,N,NNZ,A,IROW,ICOL,CKXAF,X,B,IFAIL)
CKXAF = ’N’
GO TO 100

*
ELSE IF (IREVCM.EQ.2) THEN

*
* SSOR preconditioning
*

TRANS = ’N’
CALL F11DDF(TRANS,N,NNZ,A,IROW,ICOL,RDIAG,OMEGA,CKDDF,X,B,

+ IWORK,IFAIL)
CKDDF = ’N’
GO TO 100

*
ELSE IF (IREVCM.EQ.4) THEN

*
* Termination
*

CALL F11BFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,WORK,LWORK,IFAIL)
*

WRITE (NOUT,’(A,I10,A)’) ’ Converged in’, ITN, ’ iterations’
WRITE (NOUT,’(A,1P,D16.3)’) ’ Matrix norm =’, ANORM
WRITE (NOUT,’(A,1P,D16.3)’) ’ Final residual norm =’, STPLHS
WRITE (NOUT,*)

*
* Output x
*

WRITE (NOUT,*) ’ X’
DO 120 I = 1, N

WRITE (NOUT,’(1X,1P,D16.4)’) X(I)
120 CONTINUE

*
END IF

*
140 CONTINUE

*
END IF
STOP
END

9.2 Program Data

F11DDF Example Program Data
5 N

16 NNZ
’RGMRES’ METHOD
’P’ ’I’ 1 PRECON, NORM, ITERM
2 1.e-10 1000 M, TOL, MAXITN
0.e0 0.e0 ANORM, SIGMAX
1.1e0 OMEGA
2. 1 1
1. 1 2

-1. 1 4
-3. 2 2
-2. 2 3

F11DDF NAG Fortran Library Manual

F11DDF.6 [NP3546/20A]



1. 2 5
1. 3 1
5. 3 3
3. 3 4
1. 3 5

-2. 4 1
-3. 4 4
-1. 4 5
4. 5 2

-2. 5 3
-6. 5 5 A(I), IROW(I), ICOL(I), I=1,...,NNZ
0. -7. 33.

-19. -28. B(I), I=1,...,N
0. 0. 0.
0. 0. X(I), I=1,...,N

9.3 Program Results

F11DDF Example Program Results

Converged in 12 iterations
Matrix norm = 1.200E+01
Final residual norm = 3.841E-09

X
1.0000E-00
2.0000E+00
3.0000E+00
4.0000E+00
5.0000E+00

F11 – Sparse Linear Algebra F11DDF

[NP3546/20A] F11DDF.7 (last)


	F11DDF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	TRANS
	N
	NNZ
	A
	IROW
	ICOL
	RDIAG
	OMEGA
	CHECK
	Y
	X
	IWORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4

	7 Accuracy
	8 Further Comments
	8.1 Timing
	8.2 Use of CHECK

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities


